
ECE 385

Fall 2021

Final Project Report

Stick Figure Badminton

Xu Ke / Zhu Xiaohan

LA4/Thursday & 18:00-20:50 Huang Tianhao

1. Introduction

The goal of our final project is to re-design and implement a game called Stick Figure

Badminton on the FPGA as a System-on-chip. This is a two-player game that two stickmen can only

move left and right on their own fields and they need to catch the shuttlecock from each other. If

one of them fails to make it, including the shuttlecock falls on his field or hit the net, he will lose

the game. Two stickmen will be controlled by one keyboard.

Here is the general flow of our circuit, the idea is basically based on lab 8.

2. Module Description

The most important parts of this circuit are control logic and color mapper, we can describe the

hole circuit by describing the input and output of those modules.

Player1FSM: (Same as Player2FSM)

Input: Reset - Reset player1 to S1 state to serve the ball

Input: Clk, frame_clk

Input: keycode - choose state transition

Output: figure1_state - control figure1.sv, for player1 state transition

Output: ball_exist1, ball_shoot1, ball_hit1 - control ball.sv, indicate the motion of the players

so that it can give corresponding state of the ball.

Color Mapper:

Input: Clk

Input: DrawX, DrawY: This signal is generated from the VGA controller and it indicates which

current pixel is being drawn. This is important because all object positions are compared to the pixel,

both for choosing what color to be drawn and for determining hit detection (“Is” family relies on

DrawX, DrawY)

Input: figure1_data/ figure2_data/ ball_data / background_data – picture data of players and

ball and background: These are the signal generated by each RAM for color mapper to determine

the color to print.

Input: is_figure1/ is_figure2/ is_ball/ is_background – Basically this family of “Is” logic

variables determines whether an object exists at that specific pixel, i.e. if “Is Ship” = 1 then the ship

exists at that pixel. The first sort of check that is done when deciding what type of object is present,

so it checks all of the “Is” Family.

Output: VGA_R, VGA_G, VGA_B: These are the only outputs of the color mapper module but

very important: These decide the intensity of each color channel for the current pixel being drawn.

3. Design Procedure / State Diagram / Simulation Waveform

Overview of the design procedure:

Our project is only based on lab8 files and used the 385 helper-tool to transform picture to text.

I fully understood how to use the helper tool first, then decomposed the stick figure’s motions

according to the original game. I redrew each step of motion by hand in my iPad and put them in

one picture (As the picture shown below). Then I fit the picture in right size, as well as marked the

important coordinates of one state motion: the left upper corner, the center, and the frame size (which

was put in figure1.sv and indexed by specific state). So according to our state machine’s output, our

figure1.sv will choose the right part of the picture to read and show.

After those above processes, I implemented the FSM and tested whether the state transition

works. Then, I implemented the ball’s motion. This is also the most difficult part of the project,

because I need to consider the collision condition criterion and gravity of the ball, which make the

motion of the ball hard to show. Finally, I choose a relatively fuzzy judgment method for the

collision condition criterion.

Details of my procedures are listed below:

3.1 State transition

In this procedure, all motions of one figure are decomposed to states (which listed in

figure1FSM &figure2FSM):

State S1:

The start state of the player who serve the ball.

Output:

ball_exist1 = 1'b0;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 1

(Condition) Next state:

(keycode A) SL1

(ketcode D) SR1

(keycode S) S2

1 2 3 4 5

6

7 8

9 10

11

12 13 14

15

16 17

\

State S2:

One of the transition states of serving the ball.

Output:

ball_exist1 = 1'b0;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 2

(Condition) Next state:

(Unconditional) S3

State S3:

One of the transition states of serving the ball.

Output:

ball_exist1 = 1'b0;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 3

(Condition) Next state:

(Unconditional) S4

State S4:

One of the transition states of serving the ball.

The ball now apart from player.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b1;

Corresponding diagram number: 4

(Condition) Next state:

(Unconditional) S5

State S5:

One of the transition states of serving the ball.

The ball now apart from player.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 5

(Condition) Next state:

(Unconditional) S6

State S6:

One of the transition states of serving the ball.

The ball now apart from player.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 6

(Condition) Next state:

(Unconditional) S7

State S7:

One of the transition states of serving the ball.

The ball now apart from player.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 7

(Condition) Next state:

(Unconditional) W

State W:

The waiting state for player to hit the ball.

The ball now apart from player.

Output:

ball_exist1 = 1'b0;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 8

(Condition) Next state:

(keycode A) ML1

(ketcode D) MR1

(keycode S) H1

State H1:

One of the transition states of hitting the ball.

The ball now apart from player.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b1;

ball_shoot1 = 1'b0;

Corresponding diagram number: 9

(Condition) Next state:

(Unconditional) H2

State H2:

One of the transition states of hitting the ball.

The ball now apart from player.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b1;

ball_shoot1 = 1'b0;

Corresponding diagram number: 10

(Condition) Next state:

(Unconditional) H3

State H3:

One of the transition states of hitting the ball.

The ball now apart from player.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b1;

ball_shoot1 = 1'b0;

Corresponding diagram number: 11

(Condition) Next state:

(Unconditional) H4

State H4:

One of the transition states of hitting the ball.

The ball now apart from player.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 9

(Condition) Next state:

(Unconditional) H5

State H5:

One of the transition states of hitting the ball.

The ball now apart from player.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 8

(Condition) Next state:

(Unconditional) W

State MR1:

One of the transition states of moving when

waiting for hitting the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 12

(Condition) Next state:

(Unconditional) MR2

State MR2:

One of the transition states of moving when

waiting for hitting the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 13

(Condition) Next state:

(Unconditional) MR3

State MR3:

One of the transition states of moving when

waiting for hitting the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 14

(Condition) Next state:

(Unconditional) W

State ML1:

One of the transition states of moving when

waiting for hitting the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 14

(Condition) Next state:

(Unconditional) ML2

State ML2:

One of the transition states of moving when

waiting for hitting the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 13

(Condition) Next state:

(Unconditional) ML3

State ML3:

One of the transition states of moving when

waiting for hitting the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 12

(Condition) Next state:

(Unconditional) W

State SR1:

One of the transition states of moving when

serving the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 15

(Condition) Next state:

(Unconditional) SR2

State SR2:

One of the transition states of moving when

serving the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 17

(Condition) Next state:

(Unconditional) SR3

State SR3:

One of the transition states of moving when

serving the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 16

(Condition) Next state:

(Unconditional) S1

State SL1:

One of the transition states of moving when

serving the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 16

(Condition) Next state:

(Unconditional) SL2

State SL2:

One of the transition states of moving when

serving the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 17

(Condition) Next state:

(Unconditional) SL3

State SL3:

One of the transition states of moving when

serving the ball.

Output:

ball_exist1 = 1'b1;

ball_hit1 = 1'b0;

ball_shoot1 = 1'b0;

Corresponding diagram number: 15

(Condition) Next state:

(Unconditional) S1

State machine:

Although there are 25 states here, we actually have 17 states pictures since some states share

one picture. Move left and move right can use the same three states’ picture but with opposite

directions. I first calculated the states than exported the corresponding part of 17 states picture, this

can help me save much more memory than if I use 25 different pictures to read. The following

algorithm will give the relative read address for our choice of state.

3.2 Sprite algorithm

Flow diagram:

Center, Corner and Frame are defined as:

Those data are given by the FSM output to index the coordinates:

And those coordinates are listed below, all were recorded by pixel tool:

Equation to calculate whether object exist at DrawX, DrawY:

DrawX >= figure1_x - (CenterX1-CornerX1)

DrawX <= figure1_x + (CornerX1+FrameX1-CenterX1)

DrawY >= figure1_y - (CenterY1-CornerY1)

DrawY <= figure1_y + (CornerY1+FrameY1-CenterY1)

Equation to calculate the read address:

read_address1=CenterX1-(figure1_x-DrawX)+(CenterY1-(figure1_y-DrawY))*total_length

For figure2, since its only the inverse of figure1, we still read the same picture, but we need to

change a little about the equation:

DrawX >= figure2_x - (CornerX2+FrameX2-CenterX2)

DrawX <= figure2_x + (CenterX2-CornerX2)

Equation to calculate the read address of figure2 also need some modification:

read_address2=CenterX2+(figure2_x-DrawX)+(CenterY2-(figure2_y-DrawY))* total_length

3.3 Ball motion

For ball’s motion, I considered the collision condition in a very simple way.

When the control signal of FSM gives that the ball is either in player1 hand or player 2

hand, that is, when ball_exist1==1 &ball_exist2==1, the ball will appear at the position

where the player holds the ball. We calculate the relative position of ball from figure1:

 Ball_X_Pos <= figure1_x + 10'd33;

 Ball_Y_Pos <= figure1_y + 10'd51;

Then update the ball’s position and motion.

Now, we divide the collision condition in these ways:

a) When ball is flying: keep motion in x direction, have gravity in y direction

Condition: ball_exist1==1 &ball_exist2==1

vx’= vx

vy’= vy + gt

b) When ball collides the wall: opposite direction of original x direction, have gravity in

y direction

Condition: X_Pos reach X_Min or X_Max

vx’= -vx

vy’= vy + gt

c) When ball hits the ground: game over, no velocity

Condition: Y_Pos reach Y_Min

vx’= 0

vy’= 0

d) When ball hits the bat: opposite direction of original x direction, a initial velocity in y

direction

Condition: (X_Pos, Y_Pos) in range of the bat swing area

 Ball_hit1=1 or Ball_hit2 = 1

vx’= -vx

vy’= vy + vi

4. Block Diagram

5. SV Code

Module: lab8.sv

Input & Output: Shown in diagram

Description: This module is the toplevel of our final project. It assigns all the inputs and outputs

to the right place.

Purpose: This module is used to make FPGA and our code in Eclipse interact with each other.

Module: background.sv

Input & Output: Shown in diagram

Description: This module is used to store the background picture data to on-chip memory then

read those data to background_data for Color_Mapper to assign color data.

Purpose: This module is used to place our background at the right place of the screen.

Module: figure1.sv

Input & Output: Shown in diagram

Description: This module is used to store the figure1 picture data to on-chip memory then by the

specific read address according to the data from FSM to read those data to figure1_data and

figure2_data for Color_Mapper to assign color data.

Purpose: This module is used to place certain state figure1 and figure2 at the right place of the

screen.

Module: color_mapper.sv

Input & Output: Shown in diagram

Description: This module decides which color to be output to VGA for each pixel and whether

the pixel belongs to figure1 or figure2 or ball or background and uses RGB color selection.

Purpose: This module is used to draw the figure1, figure2, ball, background, and implement RGB

colors on screen.

Module: figure1Motion.sv

Input & Output: Shown in diagram

Description: This module updates the position and motion of figure1 only at the rising edge of

frame clock and unlike what we did in lab 8, if no keys are pressed it will not change the motion.

Purpose: This module is used to calculate the positions and reacts to keypresses which are from

the user via the keyboard.

Module: figure2Motion.sv (almost same as figure1Motion.sv)

Input & Output: Shown in diagram

Description: This module updates the position and motion of figure2 only at the rising edge of

frame clock and unlike what we did in lab 8, if no keys are pressed it will not change the motion.

Purpose: This module is used to calculate the positions and reacts to keypresses which are from

the user via the keyboard.

Module: figure1FSM.sv

Input & Output: Shown in diagram

Description: This module defines our state machine of figure1, which determines the next state

and some output variable for the current state in order to control figure1 motion.

Purpose: This module regulates the states of our figure1 so that it can continuously show its

movement when swing and run. It also assigns proper values to some control signals to make the

system function properly.

Module: figure2FSM.sv (almost same as figure1FSM.sv)

Input & Output: Shown in diagram

Description: This module defines our state machine of figure2, which determines the next state

and some output variable for the current state in order to control figure2 motion.

Purpose: This module regulates the states of our figure2 so that it can continuously show its

movement when swing and run. It also assigns proper values to some control signals to make the

system function properly.

Module: hpi_io_intf

Input & Output: Shown in diagram

Description: This module is the interface between NIOS II and EZ-OTG chip, a hardware tri-state

buffer using buffer (register) for from_sw_data_out.

Purpose: This module is used to send read, write, cs, reset, data and address signals to the EZ-

OTG chip, and OTG_DATA should be high Z (tristated) when NIOS is not writing to OTG_DATA

inout bus.

Module: VGA_controller

Input & Output: Shown in diagram

Description: This module handles the synchronization of signals where VS implies vertical sync

and HS implies horizontal sync of the VGA signal we are outputting in addition to “drawing” pixels

Purpose: This module is used to display the ball bouncing on the screen, as an output from the

FPGA

Platform Designer Modules

This is the clock module which simply the 50Mhz generated by the FPGA. The clk goes from here

to all the other clocks inputs

This is our on-chip memory, which is often smaller than SRAM in size but faster and actually on

the chip. The data width is 32 bits and the total memory size is 16 bytes

This is our SDRAM that we use to store the software program due to the limited on-chip memory.

We have to use an SDRAM controller to interface with the bus since we have row/column

addressing and constantly needs to refresh in order to retain data.

This module generates the clock that goes into the SDRAM. The PLL allows us to account for delays,

specifically 3ns in order to have the SDRAM wait for the outputs to stabilize.

This is an ID checker which ensure the compatibility between hardware and software.

This is an IP based 32-bit CPU which can programmed using a high-level language.

This is a simple 8 bit-wide PIO block, which outputs the keycode from the IO_READ (keyboard).

This is a simple PIO block, which outputs the 2-bit value corresponding to the specific HPI register.

This is a simple 32 bit-wide PIO block, which is inout because data is both read from and written to

here.

This is a simple PIO block, which is a 1bit output corresponding to a “read” enable signal

This is a simple PIO block, which is a 1bit output corresponding to a “write” enable signal

This is a simple PIO block, which is a 1bit output corresponding to a “chip enable” signal

This is a simple PIO block, which is a 1bit output corresponding to a “reset” signal

6. Design statistics and Discussions

LUT 2756

DSP 0

Memory (BRAM) 1087488

Flip-Flop 2184

Frequency 127.81Mhz

Static Power 105.20mW

Dynamic Power 0.75mW

Total Power 180.57mW

7. Conclusion

I encountered many flaws when debugging, except those basic syntax errors that raised by

Quartus, something like forgetting to declare the new variable in scope, wrong assignment of FSM

states……Those errors are fixed by compare my output with the correct output to see where is the

error, I also use the RTL viewer to see the port connection to debug.

In demo, we failed to show our ball in screen, that might because the collision condition is not

right, so that the ball just flashed at one second. We reviewed our code again and made some changes.

Also, since the key is interrupted, we cannot move two players at the same time, which might cause

the inequality. This problem can be solved but need a lot of modification.

In summary, we almost completed a game Stickman Badminton. Though it’s not as our

expected before, but the motion is really smooth. I learned a lot from this project, especially how to

use FSM to give control signals that make every part work properly as a whole entity, also how to

give correct inputs and outputs between different modules. Also, beside consolidating the

knowledge I learned in the course, I learned how to use sprite and compress the picture.

