ECE 385

Fall 2021

Final Project Report

Stick Figure Badminton

Xu Ke / Zhu Xiaohan
LA4/Thursday & 18:00-20:50 Huang Tianhao

1. Introduction

The goal of our final project is to re-design and implement a game called Stick Figure
Badminton on the FPGA as a System-on-chip. This is a two-player game that two stickmen can only
move left and right on their own fields and they need to catch the shuttlecock from each other. If
one of them fails to make it, including the shuttlecock falls on his field or hit the net, he will lose

the game. Two stickmen will be controlled by one keyboard.

OTG USB
‘ CONTROLLER | BRAM

‘ USB KEYBOARD | A

W

NIOS I

A

é CONTROL LOGIC A
< —| COLOR MAPPER |
Ll
‘ GAME LOGIC FSM | SHUTTLECOCK FSM
COLLOSION
‘ PLAYER 1 FSM ’ ‘ PLAYER 2 FSM ’ < CHECKING |
\ J
A
Y
‘ VGA DRIVER |
A
A4

‘ VGA DISPLAY |

Here is the general flow of our circuit, the idea is basically based on lab 8.

2. Module Description

The most important parts of this circuit are control logic and color mapper, we can describe the

hole circuit by describing the input and output of those modules.

Plaver1FSM: (Same as Player2FSM)

Input: Reset - Reset player] to S1 state to serve the ball

Input: Clk, frame_clk

Input: keycode - choose state transition

Output: figurel state - control figurel.sv, for playerl state transition

Output: ball_existl, ball _shootl, ball hitl - control ball.sv, indicate the motion of the players
so that it can give corresponding state of the ball.

Color Mapper:

Input: Clk

Input: DrawX, DrawY: This signal is generated from the VGA controller and it indicates which
current pixel is being drawn. This is important because all object positions are compared to the pixel,
both for choosing what color to be drawn and for determining hit detection (“Is” family relies on
DrawX, DrawY)

Input: figurel data/ figure2 data/ ball data / background data — picture data of players and
ball and background: These are the signal generated by each RAM for color mapper to determine
the color to print.

Input: is_figurel/ is_figure2/ is_ball/ is_background — Basically this family of “Is” logic
variables determines whether an object exists at that specific pixel, i.e. if “Is Ship” =1 then the ship
exists at that pixel. The first sort of check that is done when deciding what type of object is present,
so it checks all of the “Is” Family.

Output: YGA_R, VGA_G, VGA_B: These are the only outputs of the color mapper module but

very important: These decide the intensity of each color channel for the current pixel being drawn.

3. Design Procedure / State Diagram / Simulation Waveform

Overview of the design procedure:

Our project is only based on lab§ files and used the 385 helper-tool to transform picture to text.
I fully understood how to use the helper tool first, then decomposed the stick figure’s motions
according to the original game. I redrew each step of motion by hand in my iPad and put them in
one picture (As the picture shown below). Then I fit the picture in right size, as well as marked the
important coordinates of one state motion: the left upper corner, the center, and the frame size (which
was put in figurel.sv and indexed by specific state). So according to our state machine’s output, our

figurel.sv will choose the right part of the picture to read and show.

5

1 2 3 :|4 >
15
9 1
6 1
7 8
12 ?V

After those above processes, I implemented the FSM and tested whether the state transition

>7X
R

17

3
>

works. Then, I implemented the ball’s motion. This is also the most difficult part of the project,
because I need to consider the collision condition criterion and gravity of the ball, which make the
motion of the ball hard to show. Finally, I choose a relatively fuzzy judgment method for the
collision condition criterion.

Details of my procedures are listed below:

3.1 State transition

In this procedure, all motions of one figure are decomposed to states (which listed in

figure1FSM &figure2FSM):

State S1:

The start state of the player who serve the ball.
Output:

ball_existl = 1'b0;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 1
(Condition) Next state:

(keycode 4) SL1

(ketcode D) SR1

(keycode S) S2

State S2:

One of the transition states of serving the ball.
Output:

ball existl = 1'b0;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 2
(Condition) Next state:

(Unconditional) S3

State S3:

One of the transition states of serving the ball.
Output:

ball_existl = 1'b0;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 3
(Condition) Next state:

(Unconditional) S4

State S4:

One of the transition states of serving the ball.
The ball now apart from player.

Output:

ball_existl = 1'bl;

ball_hitl = 1'b0;

ball_shootl = 1'bl;

Corresponding diagram number: 4
(Condition) Next state:

(Unconditional) S5

State S5:

One of the transition states of serving the ball.
The ball now apart from player.

Output:

ball _existl = 1'bl;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 5
(Condition) Next state:

(Unconditional) S6

e o o

State S6:

One of the transition states of serving the ball.
The ball now apart from player.

Output:

ball existl =1'bl;

ball_hitl = 1'b0;

ball shootl =1'b0;

Corresponding diagram number: 6
(Condition) Next state:

(Unconditional) S7

State S7:

One of the transition states of serving the ball.
The ball now apart from player.

Output:

ball existl = 1'bl;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 7
(Condition) Next state:

(Unconditional) W

State W:

The waiting state for player to hit the ball.
The ball now apart from player.
Output:

ball_existl = 1'b0;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 8
(Condition) Next state:

(keycode 4) ML1

(ketcode D) MR1

(keycode S) H1

State H1:

One of the transition states of hitting the ball.
The ball now apart from player.

Output:

ball existl =1'bl;

ball_hitl =1'b1;

ball_shootl = 1'b0;

Corresponding diagram number: 9
(Condition) Next state:

(Unconditional) H2

State H2:

One of the transition states of hitting the ball.
The ball now apart from player.

Output:

ball existl =1'bl;

ball hitl =1'bl;

ball_shootl = 1'b0;

Corresponding diagram number: 10
(Condition) Next state:

(Unconditional) H3

State H3:

One of the transition states of hitting the ball.
The ball now apart from player.

Output:

ball _existl = 1'b1;

ball_hitl = 1'bl;

ball_shootl = 1'b0;

Corresponding diagram number: 11
(Condition) Next state:

(Unconditional) H4

State H4:

One of the transition states of hitting the ball.
The ball now apart from player.

Output:

ball_existl = 1'bl;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 9
(Condition) Next state:

(Unconditional) H5

State HS:

One of the transition states of hitting the ball.
The ball now apart from player.

Output:

ball existl = 1'bl;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 8
(Condition) Next state:

(Unconditional) W

WUV,

State MR1:

One of the transition states of moving when
waiting for hitting the ball.

Output:

ball existl = 1'bl;

ball hitl =1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 12
(Condition) Next state:

(Unconditional) MR2

State MR2:

One of the transition states of moving when
waiting for hitting the ball.

Output:

ball existl = 1'b1;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 13
(Condition) Next state:

(Unconditional) MR3

State MR3:

One of the transition states of moving when
waiting for hitting the ball.

Output:

ball _existl = 1'bl;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 14
(Condition) Next state:

(Unconditional) W

State ML1:

One of the transition states of moving when
waiting for hitting the ball.

Output:

ball _existl = 1'bl;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 14
(Condition) Next state:

(Unconditional) ML2

R

State ML2:

One of the transition states of moving when
waiting for hitting the ball.

Output:

ball existl =1'bl;

ball hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 13
(Condition) Next state:

(Unconditional) ML3

State ML3:

One of the transition states of moving when
waiting for hitting the ball.

Output:

ball existl = 1'bl;

ball _hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 12
(Condition) Next state:

(Unconditional) W

State SR1:

One of the transition states of moving when
serving the ball.

Output:

ball existl = 1'bl;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 15
(Condition) Next state:

(Unconditional) SR2

State SR2:

One of the transition states of moving when
serving the ball.

Output:

ball existl = 1'bl;

ball hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 17
(Condition) Next state:

(Unconditional) SR3

Do Do o e

State SR3:

One of the transition states of moving when
serving the ball.

Output:

ball _existl = 1'bl;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 16
(Condition) Next state:

(Unconditional) S1

State SL.1:

One of the transition states of moving when
serving the ball.

Output:

ball_existl = 1'bl;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 16
(Condition) Next state:

(Unconditional) SL2

State SL.2:

One of the transition states of moving when
serving the ball.

Output:

ball_existl = 1'bl;

ball_hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 17
(Condition) Next state:

(Unconditional) SL3

State SL.3:

One of the transition states of moving when
serving the ball.

Output:

ball existl = 1'bl;

ball hitl = 1'b0;

ball_shootl = 1'b0;

Corresponding diagram number: 15
(Condition) Next state:

(Unconditional) S1

State machine:

S

J
VA

Although there are 25 states here, we actually have 17 states pictures since some states share
one picture. Move left and move right can use the same three states’ picture but with opposite
directions. I first calculated the states than exported the corresponding part of 17 states picture, this
can help me save much more memory than if I use 25 different pictures to read. The following

algorithm will give the relative read address for our choice of state.

3.2 Sprite algorithm

Flow diagram:

No
Object exists at

DrawX, DrawY?

Yes l

Calculate the
read address

!

Yes | Code corresponds

Draw = Off = to Transparency?

No

Draw = On

Center, Corner and Frame are defined as:

(CornerX, CornerY)

<

(CenterX, CenterY)

T
>
()
g °
L
N3

k—FrameX —#

Those data are given by the FSM output to index the coordinates:

assign Centerxl = figurestateCenterX[statel]; / Center position
assign centeryl = figurestatecentery[statel];

assign Cornerxl = figureStateCornerX[statel]; left up corner
assign Corneryl = figurestateCornery[statel];

assign Framexl = figureStateFramex[statel]; // the frame size
assign Frameyl = figurestateFramey[statel];

assign Centerx2 = figurestateCenterX[state2]; Center position
assign Centery2 = figureStateCentery[state2];

assign Cornerx2 = figurestateCornerX[state2]; / left up corner
assign cornery2 = figurestatecornery[state2];

assign Framex2 = figurestateFramex[state2]; // the frame size

assign Framey2 = figuresStateFramey[state2];

And those coordinates are listed below, all were recorded by pixel tool:

assign figurestateCenterx = fé._ 69 ; ?: _s10° : 10 ?"7;'.
assign figurestatecentery =
assign figurestateCornerx =
assign figurestateCornery =

assign figurestateFramex =

assign figurestaterramey =

Equation to calculate whether object exist at DrawX, DrawY:

DrawX >= figurel x - (CenterXI-CornerXl)
DrawX <= figurel x + (CornerX1+FrameXI-CenterXl)
DrawY >= figurel y - (CenterY1-CornerYl)
DrawY <= figurel y + (CornerYl+FrameYl-CenterYl)

Equation to calculate the read address:

read_address1=CenterX1-(figurel x-DrawX)+(CenterYI-(figurel y-DrawY))*total length

For figure2, since its only the inverse of figurel, we still read the same picture, but we need to

change a little about the equation:

DrawX >= figure2 x - (CornerX2+FrameX2-CenterX2)
DrawX <= figure2 x + (CenterX2-CornerX2)

Equation to calculate the read address of figure2 also need some modification:

read_address2=CenterX2+(figure2 x-DrawX)-+(CenterY2-(figure2 y-DrawY))* total length

3.3 Ball motion

For ball’s motion, I considered the collision condition in a very simple way.

When the control signal of FSM gives that the ball is either in playerl hand or player 2

hand, that is, when ball existl==1 &ball exist2==1, the ball will appear at the position

where the player holds the ball. We calculate the relative position of ball from figurel:

Ball X Pos <= figurel x + 10'd33;

Ball Y Pos <= figurel y + 10'd51;

Then update the ball’s position and motion.

Now, we divide the collision condition in these ways:

a)

b)

c)

d)

When ball is flying: keep motion in x direction, have gravity in y direction
Condition: ball existl==1 &ball_exist2==

Vx'= Vx

vy'=vy + gt

When ball collides the wall: opposite direction of original x direction, have gravity in
y direction

Condition: X Pos reach X Min or X Max

Vx'= -V

vy'= vy + gt

When ball hits the ground: game over, no velocity

Condition: Y _Pos reach’ Y Min

When ball hits the bat: opposite direction of original x direction, a initial velocity in 'y
direction
Condition: (X Pos, Y Pos) in range of the bat swing area
Ball hitl=I or Ball hit2 =1
Vx'= =Vx

Vy'= vy + Vi

4. Block Diagram

oramiy
W

[r—

o Apcoat -
LD ADCLREK >

0B

D, paicK

D
(o

e i st i o o

ax
£ oo aooap o)

10 Ags
Py 18 cnien

o6 65 1
5> ora aThs o1
> ote.pow

OTB_RSTN

> erownn

5. SV Code

module Tab8(input CLOCK_50,
input [3:0] KEY, //bit 0 is set up as Reset
input [18: D] SW, // only for test
output 10?1c [HEXO, HEXLl, HEX2, HEX3, HEX4, HEX5, HEX6,
J//output Togic [1 0] LEDG,
/) vea Interface
output logic [7:0] VGA_R, //vGAa Red
VGA_G, J/VGA Green
VGA_E, //VGA Blue
output logic VGA_CLK, J/veA Clock
VGA_SYNC_N, //vGA sync signal
VGA_BLANK_N, //vGA Blank signal
VGA_VS, //VGA virtical sync signal
VGA_HS, //VGA horizontal sync signal
J/ C¥7Ce7200 Interface
inout wire [15:0] OTG_DATA, J/CY7Ce7200 Data bus 16 Bits
output logic [1:0] OTG_ADDR, J/CY7CE7200 Address 2 Bits
output logic OTG_CS_N, //e¥7Ce7200 Chip select
OTG_RD_N, J/CY7TCE7200 write
OTG_WR_N, //CY7C67200 Read
OTG_RST_N, //CY7C67200 Resetr
input OTG_INT, //CY7CO7200 Interrupt
J// sDRAM Interface for Nios ITI Software
output logic [12:0] DRAM_ADDR, //SDRAM Address 13 Bits
inout wire [31:0] DRAM_DQ, //SDRAM Data 32 Bits
output logic [1:0] DRAM_BA, //SDRaM Bank Address 2 Bits
output logic [3:0] DRAM_DQM, //SDRAM Data Mast 4 Bits
output logic DRAM_RAS_N, //SDRAM Row Address strobe
DRAM_CAS_N, //SDRAM Column Address Strobe
DRAM_CKE, //sDRaM Clock Enable
DRAM_WE_N, //SDRAM write Enable
DRAM_CS_N, //SDRAM Chip select
DRAM_CLK, //SDRAM Clock

input AUD_ADCDAT,

Tnput AUD_DACLRCK,

input AUD_ADCLRCK,

input AUD_BCLK,

output logic AUD_DACDAT,
output logic AUD_XCK,
output logic I2C_SCLK,
output logic I2C_SDAT

Module: 1ab8.sv

Input & Qutput: Shown in diagram

Description: This module is the toplevel of our final project. It assigns all the inputs and outputs
to the right place.

Purpose: This module is used to make FPGA and our code in Eclipse interact with each other.

ECE385-HelperTools/PNG-To-Txt
author: Rishi Thakkar

¢ % B B %

module backEround C

input clk,
//input logic background_exist,
input logic [9:0] Drawx, Drawy,
output logic [2:0] background_data,
output logic is_background

s
// screen size
parameter [9:0] SCREEN_WIDTH = 10" d480;
parameter [9:0] SCREEN_LENGTH = 10 d640;
parameter [9:0] RESHAPE_LENGTH = 10'd32
S/ Toad memory-------———-—————- /f
logic [18:0] read_address;
assign read_address = Drawx/2 + Drawy/2*RESHAPE_LENGTH;
background_ram background_ram(.*);
always_comb begin
is_background = 1'bl;
. end
endmodule

module background_ram

input [18:0] read_address,
input Clk,

output logic [2:0] background_data
'Jﬂ mem has width of 3 bits and a total of 307200(640x480) addresses
//logic [2:0] mem [0:307199]; // 640x480 = 307200
Togic [2:0] mem [0:76799];// 320x240 = 76800
initial
begin
; $readmemh("background. txt™, mem); //
-en
always_ff @ (posedge c1k) begin
background_data<= mem[read_address];

/

read into mem

end

'endmodu1e

Module: background.sv

Input & Output: Shown in diagram

Description: This module is used to store the background picture data to on-chip memory then
read those data to background data for Color Mapper to assign color data.

Purpose: This module is used to place our background at the right place of the screen.

modl..ﬂ e figurel(

input Clk, // 50 MHz clock
input logic [9:0] Drawx, Drawy,
input logic [9:0] figurel_x, figurel_y, // from figurelmotion output

input logic [9:0] figure2_x, figure2_y, // from figurezmotion output

input logic [5:0] figurel_state, figure2_ state, // from figurelfFsm and figure2rsm

output logic [2:0] figurel_data, figurez_data,

output logic dis_figurel, is_figure2 // whether current pixel belongs to figurel/2 or background

// screen size
parameter [9:0
parameter [9:0
parameter [9:0
parameter [9:0

SCREEN_WIDTH = 10°d480; // v
SCREEN_LENGTH = 10'd640; // X
FIGUREL_WIDTH = 10'd424; // v
FIGUREL_LENGTH = 10'd502;// X

i

ffmmmm e Toad memory--—--—----————————— I/
logic [18:0] read_addressl, read_address2;

logic [9:0] centerxl, Centerx2; // figurel center in the collection graph
logic [9:0] centeryl, Centery2

logic [9:0] cornerxl, cornerxz; // the frame left up corner

logic [9:0] Corneryl, Corneryz;

logic [9:0] Framexl, Framex2; // the frame size

logic [9:0] Framevyl, Framey2

logic [5:0] statel, state2;
figurel_RaM figurel_RAM(.*);
// figure2_ram figure2_ram(.*);

// use state as index to find the center of saber

logic [9:0] figurestateCenterx[0:16];
logic [9:0] figurestateCentery[0:16];
logic [9:0] figurestateCornerx[0:16];
logic [9:0] figurestateCornery[0:16];
Jogic [9:0] figurestateFramex[0:16];
logic [9:0] figurestateFramey[0:16];

assign

figurestatecenterx

'{10'd69,10'd155 ,10'd219

,10'd278 ,10'd343 ,

10'd21 ,10°'d123 ,10'd222 ,10'd270 ,10'd320
10'd412 ,10'd69 ,10°'d162 ,10'd259 ,10'd463
10'd352 ,10'd465}; //TODO
assign figurestatecentery = '{10'd22,10'd22 ,10'd21 ,10'd21 ,10'd21 ,
10'd198 ,10'd198 ,10°'d198 ,10'd198 ,10'd198
10'd198 ,10'd332 ,10°d332 ,10°d333 ,10'd72
10'd334 ,10°'d334};//T0DO
assign figurestatecornerx = '{10'd0 ,10'd106 ,10'd194 ,10'd257 ,10'd321 ,
10'do ,10'd103 ,10°d151 ,10'd248 ,10'd299
10'd387 ,10'do ,10°'d92 ,10'd188 ,10'd394
10'd286 ,10'd396}; //TODO
assign figurestatecornery = '{10'd0 ,10°d0 ,10"do ,10°do ,10°do i
10'di60 ,10°d107 ,10°'d145 ,10'd122 ,10°d142
10'd172 ,10'd283 ,10'd283 ,10'd283 ,10'd49
10'd306 ,10'd311};//TODO
assign figurestateFramex = '{10'd106,10'd88 ,10'd63 ,10'd64 ,10'd1i12 ,
10'd103 ,10'd48 ,10°d97 ,10'd51 ,10'd85
10'd115 ,10'd92 ,10'd96 ,10'd98 ,10'd108
10'd101 ,10'd106}; //TODO
assign figurestateFramey = "{10'd108,10'd107 ,10'd114 ,10'd114 ,10'd106 ,
10'd123 ,10'd176 ,10°'d138 ,10'd161 ,10'd141 ,
10'd111 ,10'd137 ,10°'d137 ,10'd138 ,10'd107
10'di16 ,10'd110};//TODO
assign Centerxl = figurestateCenterx[statel]; // center position
assign Centeryl = figurestateCentery[statel];
assign cornerxl = figurestatecCornerx[statel]; // left up corner
assign corneryl = figurestateCornery[statel];
assign Framexl = figureStateFramexEstateli; // the frame size
assign Frameyl = figurestateFramey[statel];
assign Centerx2 = figurestateCenterx[state2]; // center position
assign Centery2 = figurestateCentery[state2];
assign Cornerx2 = figurestateCornerX[state2]; // left up corner
assign Cornery2 = figurestatecCornery[state2];
assign Framex2 = figurestateFramex[state2]; // the frame size
assign FrameY2 = figurestateFramey[state2];

// Compute whether the pixel corresponds to figurel/2 or background
/* since the multiplicants are required to be signed, we have to first cast them
from logic to int (signed by default) before they are multiplied. */
always_comb begin
statel = figurel_state;
state2 = figure2_state;
read_addressl = 19°b0;
is_figurel = 1'b0;
read_address2 = 19°b0;
is_figure2 = 1'b0;
if (EDrawx >= figurel_x -
prawy >= figurel_y -
is_figurel = 1'bl;
read_addressl = centerxl-(figurel_x - Drawx) + (Centervl-(fi
/ x position in figurel y position in

&& DrawX <=

|| figurel_x <
&& Drawy <=

figurel_x +
|| figurel_y < g

gcenterxl—cnrnerxlg
figurel_y +

Ecenterxl—curnerxl;g
centeryl-corneryl

gcnrnerxl#ramexl—
Centeryl-corneryl

Corneryl+Frameyl-

2yr~e1_y - Drawy))*FIGUREL_LENGTH;
// igurel
end
if ((prawx >= figure2_x - (Cornerx2+Framex2-Centerx2) || figure2_x < (Centerx2-Cornerx2)) &% Drawx <= figure2_x + (Centerx2-
(Draw;: >m figurezl_y - (centeryz-cornery2) || figure2_y < (CenteryZ-Cornery2)) && Drawy <= figureZ_y + (Cornery2+Framey2-
is_figure2 = 1'bl;
read_address2 = centerx2+(figure2_x - Drawx) + (Centerv2-(figure2_y - DrawY))*FIGUREL_LENGTH;
d / x position in figure2 y position in Tigure2
en

endmodule

module figurel_ram(|
input [18:0] read_addressl, read_address2,//write_address,
input clk,
output logic [2:0] figurel_data, figure2_data

// mem has width of n bits and a total of xxx addresses

logic %2:0] mem [0:212847]; // 424x502 = 212848 212847

initia

begin
$readmemh("figurel.txt", mem);// read into mem

end

always_ff @ (posedge Clk) begin
figurel_data<= mem[read_addressl];// get data accroding to read_address computed above
figurez_data<= mem[read_address2];
n

endmodule

Module: figurel.sv

Input & Output: Shown in diagram

Description: This module is used to store the figurel picture data to on-chip memory then by the
specific read address according to the data from FSM to read those data to figurel data and
figure2 data for Color_Mapper to assign color data.

Purpose: This module is used to place certain state figurel and figure?2 at the right place of the

screen.

/ color_mapper: Decide which color to be output to VGA for each pixel.
module color_mapper (1input logic Clk

input logic 2:\5]background,data,
input logic [2:0]figurel_data, figure2_data, ball_data, //basket_data,

input is_figurel, is_figure2, //is_basket, // whether current pixel belongs to figure
input is_background,

input is_ball,

input [Drawx, Drawy, '/ current pixel coordinates

3 output Togic [7:0] VGA_R, VGA_G, VGA_B // VGA RGB output

logic [7:0] Red, Green, Blue;
logic [23:0] background_color,figurel_color, figure2_color, ball_color;//basket_color,
Togic [22:0] color;
T color palette------——-————-—-/ 7
logic [)] background_palette [0:7];
logic [22:0] figurel_palette[0:7];
assign background_palette = "{24 'hffffff, 24'h7s 24'h474d4b, 24'h4s
24'h986120, 24'he 24"h297ba2, 24'h0053

assign figurel_palette = "{24 "hot
24" h

FtoxfPRFFEFT,

4 "hffffff, 24 "hdcddc
eaede5, 24'h973

24" h545e5f,

24"ha2272c};

/ black white grey
/ '0x000000°, ‘Oxffffff’', 'Oxdcddd8’, '0x545e5f', '0Ox5b6161°, 'Oxeae9e5’ ,

assign background_color = background_palette[background_datal;
assign figurel_color = figurel_palette[figurel_data];

assign fiqure2_color = figurel_palette[figure2_data];

assign ball_color = figurel_palette[ball_data];|

// output colors to VGA
assign VGA_R = color[23:16];

assign VGA_G
assign VGA_B

color[15:8];
color[7:0];

// Assign color based on is_ball signal
always_comb
begin

if (is_figurel == 1'bl && figurel_color != 24 "hFFFFFF)
begin
color = figurel_color;

end
§15€ if (is_figure2 == 1'bl && figure2_color != 24 'hFFFFFF)
egin
¢ color = figure2_color;
end
else if (is_ball == 1°'bl && ball_color != 24 'hFFFFFF)
begin
color = ball_color;
end
else if (is_background == 1'bl}
begin
color = background_color;
end
else
hegin
color = 24 "hOOFFOO;
end
end
endmodule

Module: color mapper.sv

Input & Output: Shown in diagram

37e};
', 'Ox474d4b", 'OXASJbA'lf?" '0x986120', 'Oxebaas4’,

"0x297ba2’,

red
'0x973b2e’,

Description: This module decides which color to be output to VGA for each pixel and whether

the pixel belongs to figurel or figure2 or ball or background and uses RGB color selection.

Purpose: This module is used to draw the figurel, figure2, ball, background, and implement RGB

colors on screen.

foduTe figurelMotion (
input clk, /7 50 MHz clock
Resetr, // Active-high reset signal
frame_clk, // The clock indicating a new frame (~60HZ)
input [9:0] DrawxX, Drawy, // Current pixel coordinates
input [7:0] keycode, // keyboard press
output logic [9:0] figurel_x,
output logic [9:0] figurel_y

parameter [9:0] figurel_X_cCenter
parameter [9:0] figurel_v_center
// motion range

10'd160; // Start X position
10'd360; // start ¥ position

parameter [2:0] figurel X Min = 10'd40; // Leftmost point on the X axis
parameter [9:0] figurel_x_Max = 10'd3200; // Rightmost point on the X axis
parameter [9:0] figurel_¥_Min = 10°d0; // Topmost point on the ¥ axis
parameter [9:0] figurel_y_mMax = 10'd440; // Bottommost point on the Yy axis
// motion step

parameter [9:0] figurel_x_Step = 10°d1; // step size on the X axis
parameter [29:0] figurel_v_step = 10°dl; // step size on the ¥ axis

logic [9:0] figurel_x_ros, figurel_x_Motion, figurel_Y_Pos, figurel_y_motion;
logic [9:0] figurel_x_Pos_in, figurel_y_pros_in;

//////// Do not modify the always_ff blocks. ////////
Detect rising edge of frame_clk
1og1c frame_clk_delayed, frame_clk_rising_edge;
a1wa¥5_ff @ (posedge C1k) begin
rame_clk_delayed <= frame_clk;
frame_clk_rising_edge <= (frame_clk == 1'bl) && (frame_clk_delayed = 1'h0);

// Update registers
always_ff @ (posedge Clk)

begin
¢ gf (rReset) // back to original place and don’'t move
egin
figurel_x_Pos <= Tigurel_x_Center;
figurel_Y_Pos <= figurel_¥_Center;
end
else
begin
figurel_X_Pos <= figurel_x_Pos_in;
figurel_Y_Pos <= figurel_¥_Pos_in;
end
end
always_comb
begin

// By default, keep motion and position unchanged
figurel_x_Pos_in = figurel_x_pPos;
figurel_¥_Pos_in = figurel_Y_Pos;

figurel_x = figurel_x_Pos;

figurel_y = figurel_vy_Pos;

figurel_X_Motion = 10°d0;

figurel_y_Motion = 10°d0;

// Update position and motion only at rising edge of frame clockwv
if (frame_clk_rising_edge)

begin
case(keycode)
/7 Ay Go left
beg1n
figurel_x Motion = (~(figurel_x_step) + 1 bl);
figurel_y_Motion = 10 h000;
end
8'ho7: // D: Go right
begin
figurel_ X Motion = f1gurel_x_5tep,
figurel_y_Motion = 107 h00O;
end
8'hla: // W: Jump not use now
begin
figurel_¥_Motion = 10°h000; //(~(figurel_v_sStep) + 1'bl);
figurel_x_Motion = 10" h00O;
end
8'hle: // sS: Bat not use now
begin
figurel_y_Motion = 10°h000; //figurel_y_sStep;
figurel_x_Motion = 10" h000;
end
default:
beaﬁn
en
endcase

// Update the figurel’'s position with its motion
figurel_x_pPos_in = figurel_x_Pos + Tigurel_x_Motion;
figurel_¥_Pos_in = figurel_y_Pos + figurel_y_Motion;
end
end
endmodule

Module: figurelMotion.sv

Input & Output: Shown in diagram

Description: This module updates the position and motion of figurel only at the rising edge of
frame clock and unlike what we did in lab 8, if no keys are pressed it will not change the motion.
Purpose: This module is used to calculate the positions and reacts to keypresses which are from

the user via the keyboard.

Module: figure2Motion.sv (almost same as figure1 Motion.sv)

Input & Output: Shown in diagram

Description: This module updates the position and motion of figure2 only at the rising edge of
frame clock and unlike what we did in lab 8, if no keys are pressed it will not change the motion.
Purpose: This module is used to calculate the positions and reacts to keypresses which are from

the user via the keyboard.

moduTe figurelFsM(input cTk, 50 MHz cTock
Reset, Active-high reset signal
frame_clk, The clock indicating a new frame (~60Hz)

input [7:0] keycode,
output [5:0] figurel_state,
output logic ball_existl,
output logic ball_shootl,
output Togic ball_hitl);

Togic frame_clk_delayed, frame_clk_rising_edge;
logic [5:0] counter,inner_counter;
lTogic set_zero;

enum logic [4:0] { s1, s2, s3, s4, S5, S6, S7,
W, Hl, H2, H3, H4, HS5,
SR1, 'SR2, SR3, SL1, SL2, SL3,
MR1, MR2, MR3, ML1l, ML2, ML3} State, Next_state; Internal state logic

always_ff @ (posedge frame_clk)

begin :
counter<=inner_counter;
if(set_zero)

counter<=6'b0;
end
always_comb
begin

inner_counter=counter+1;
end
always_ff @ (posedge c1k)
begin

if (Reset)

State <= S1;
else

state <= Next_state;
end

always_ff @ (posedge frame_clk)

begin
set_zero=1'b0; Assign control signals based on current state
pDefault next state is staying at current state case (state)
Next_state = State;| 51 :
unique case (State) begin
Sk ball_existl =
case(keycode) ball_hitl = 1'b0;
8'ho4: A: Go left ball_shootl =
Next_state = SL1; figurel_state do;
8'h07: D: Go right en
Next_state = SR1; S2 :
8'hl6: ST HIT begin
Next_state = S52; ball_existl
default : ball_hitl = 1
Next_state = S1; ball_shootl
endcase figurel_stat H
s2 ; end
Next_state = S3; s3 :
s3: : begin
Next_state = S4; ball_existl =
sS4 ball_hitl =1
Next_state = S5; ball_shootl =
L f1gurel_state
Next_state = S6; en
56 & sS4 :
Next_state = S7; begin
57 % ball_existl = 1
Next_state = W; ball_hit1l = 1
W ball_shootl =
case(keycode) figurel_state
8 ho4 : A: Go left en
Next_state = ML1; Sy o
8'ho7: D: Go right begin
Next_state = MRI; ball_existl =
116: S: Hit ball_hitli =1
Next_state = H1; ball_shootl =
default : figurel_state
Next_state = W; en
endcase

Module: figure1FSM.sv

Input & OQutput: Shown in diagram

Description: This module defines our state machine of figurel, which determines the next state
and some output variable for the current state in order to control figurel motion.

Purpose: This module regulates the states of our figurel so that it can continuously show its
movement when swing and run. It also assigns proper values to some control signals to make the

system function properly.

Module: figure2FSM.sv (almost same as figure1FSM.sv)

Input & OQutput: Shown in diagram

Description: This module defines our state machine of figure2, which determines the next state
and some output variable for the current state in order to control figure2 motion.

Purpose: This module regulates the states of our figure2 so that it can continuously show its
movement when swing and run. It also assigns proper values to some control signals to make the

system function properly.

Imodule hpi_jo_intf(input Clk, Reset,
input [1:0] from_sw_address,
output[15:0] from_sw_data_in,
input [15:0] from_sw_data_out,
input from_sw_r, from_sw_w, from_sw_cs, from_sw_reset, // Active Tow
inout [15:0] OTG_DATA,
output[1:0] ©OTG_ADDR,
output OTG_RD_N, OTG_WR_N, OTG_CS5_N, OTG_RST_N // Active low

H
Buffer [reg'ister) for from_sw_data_out because inout bus should be driven

a register, not combinational logic.
logic flE:l)] from_sw_data_out_buffer;

// TOoDO: Fill in the blanks below.
always_ff @ (posedge Clk)

1begin
if(Reset)

1 begin
from_sw_data_out_buffer <= 16'h0000;
OTG_ADDR <= 2'h00;
OTG_RD_N <= 1"hl;
OTG_WR_N <= 1"h1;
OTG_CS_N <= 1"h0;
OTG_RST_N <= 1"h0;
from_sw_data_in <= 16"h0000;

- end

else

1 begin
from_sw_data_out_buffer == from_sw_data_out;
OTG_ADDR <= from_sw_address;
OTG_RD_N <= from_sw_r;
OTG_WR_N <= from_sw_w;
OTG_CS_N <= from_sw_cs;
OTG_RST_N <= 1"bl;|
from_sw_data_in <= OTG_DATA;

- end

end

OTG_DATA should be high z (tristated) when NIOS is not writing to OTG_DATA inout bus.
// Look at tristate.sv in lab 6 for an example.)
assign OTG_DATA = ~from_sw_w 7 from_sw_data_out_buffer : {16'bz};

endmodule
Module: hpi_io_intf
Input & OQutput: Shown in diagram
Description: This module is the interface between NIOS II and EZ-OTG chip, a hardware tri-state
buffer using buffer (register) for from_sw_data_out.
Purpose: This module is used to send read, write, cs, reset, data and address signals to the EZ-
OTG chip, and OTG_DATA should be high Z (tristated) when NIOS is not writing to OTG_DATA

inout bus.

imodule VGA_controller (input clk, // 50 MHz clock

Reset, 7 Act'ivefhw‘?h reset signal
output logic VGA_HS, '/ Horizontal sync pulse. Active Tow
VGA_VS, '/ vertical sync pulse. Active Tow
input VGA_CLK, '/ 25 MHZ VGA clock input
output logic VGA_BLANK_N, // Blanking interval indicator. Active low.
VGA_SYNC_N, // Composite Sync signal. Active low. we don't use it in this lab,
// but the video DAC on the DE2 board requires an input for it.
output logic [9:0] Drawx, // horizontal coordinate
Drawy '/ vertical coordinate
b

/800 Eirixe?s per line (including front/back porch)
/ 525 lines per frame (including front/back porch)
parameter [9:0] H_TOTAL = 10'd8od;
parameter [9:0] V_TOTAL = 10'd525;

logic VGA_HS_in, VGA_VS_in, VGA_BLANK_N_in;
'Iogjc E\J:O] h_counter, v_counter;
logic [9:0] h_counter_in, v_counter_in;

assign VGA_SYNC_N = 1'b0;
assign Drawx = h_counter;
assign DrawY = v_counter;

/ VGA control signals.
// vGA_CLK is generated by PLL, so you will have to manually generate it in simulation.
always_ff @ (posedge VGA_CLK)
] begin
if (Reset)
] begin
VGA_HS <= 1'b0;
VGA_VS <= 1'h0;
VGA_BLANK_N <= 1'b0;
h_counter <= 10'd0;
v_counter <= 10°d0;
- en
else
1 begin
VGA_HS <= VGA_HS_in;
VGA_VS <= VGA_VS_in;
VGA_BLANK_N <= VGA_BLAND_(_N_‘ln;
h_counter <= h_counter_in;
v_counter <= v_counter_in;

Module: VGA_controller

Input & OQutput: Shown in diagram

Description: This module handles the synchronization of signals where VS implies vertical sync
and HS implies horizontal sync of the VGA signal we are outputting in addition to “drawing” pixels
Purpose: This module is used to display the ball bouncing on the screen, as an output from the

FPGA

Platform Designer Modules

Clock Source

elk_in Clock Input
clk_in reset Reset Input
clk Clock Output
clk_reset Reset Output

This is the clock module which simply the 50Mhz generated by the FPGA. The clk goes from here

to all the other clocks inputs

E onchip memory2 0 |On—Chip Memory (RAM or ROM) I...

clkl Clock Input
sl Avalon Memory Mapped Slave
resetl Reset Input

This is our on-chip memory, which is often smaller than SRAM in size but faster and actually on

the chip. The data width is 32 bits and the total memory size is 16 bytes

E sdram SDRAM Controller Intel FPGA IP
clk Clock Input
reset Reset Input
sl Avalon Memory Mapped Slave
wire Conduit

This is our SDRAM that we use to store the software program due to the limited on-chip memory.
We have to use an SDRAM controller to interface with the bus since we have row/column

addressing and constantly needs to refresh in order to retain data.

E sdram_pll ALTPLL Intel FPGA IP
inclk_interface Clock Input
inclk_interface_... |Reset Input
pll_slave Avalon Memory Mapped Slave
c0 Clock Output
cl Clock Output

This module generates the clock that goes into the SDRAM. The PLL allows us to account for delays,

specifically 3ns in order to have the SDRAM wait for the outputs to stabilize.

E sysid_gqsys_0 System ID Peripheral Intel FP...
clk Clock Input
reset Reset Input
control_slave Avalon Memory Mapped Slave

This is an ID checker which ensure the compatibility between hardware and software.

E]lg nios2_gen2 0 Hios II Processor

clk Clock Input
reset Reset Input
data_master Avalon Memory Mapped Master

instruction master |Avalon Memory Mapped Master
1rq Interrupt Receiver

debug reset_request |Reset Qutput

debug mem_slave Avalon Memory Mapped Slave

custom_instructi... [Custom Instruction Master

This is an IP based 32-bit CPU which can programmed using a high-level language.

E keycode PIO (Parallel I/0) Intel FPGA IP
clk Clock Input
reset Reset Input
sl Avalon Memory Mapped Slave
external comnection [Conduit

This is a simple 8 bit-wide PIO block, which outputs the keycode from the IO READ (keyboard).

E otg hpi_address
clk
reset
sl

external_connection

PI0 (Parallel I/0) Intel FPGA IP
Clock Input

Reset Input

Avalon Memory Mapped Slave

Conduit

This is a simple PIO block, which outputs the 2-bit value corresponding to the specific HPI register.

E otg hpi_dats
clk
reset
sl

external_connection

PIO (Parallel I/0) Intel FPGA IP
Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

This is a simple 32 bit-wide PIO block, which is inout because data is both read from and written to

here.

E otg hpi_r
clk
reset
sl

external_connection

PI0 (Parallel I/0) Intel FPGA IP
Clock Input

Reset Input

Avalon Memory Mapped Slave

Conduit

This is a simple PIO block, which is a 1bit output corresponding to a “read” enable signal

E otg hpi_w
clk
reset
sl

external connection

PI0 (Parallel I/0) Intel FPGA IP
Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

This is a simple PIO block, which is a 1bit output corresponding to a “write” enable signal

E otg hpi_cs
clk
reset
sl

external_connection

PI0 (Parallel I/0) Intel FPGA IP
Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

This is a simple PIO block, which is a 1bit output corresponding to a “chip enable” signal

E otg hpi_reset
clk
reset
sl

external connection

PI0 (Parallel I/0) Intel FPGA IP
Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

This is a simple PIO block, which is a 1bit output corresponding to a “reset” signal

6. Design statistics and Discussions

LUT 2756
DSP 0
Memory (BRAM) 1087488
Flip-Flop 2184
Frequency 127.81Mhz
Static Power 105.20mW
Dynamic Power 0.75mW
Total Power 180.57mW

7. Conclusion

I encountered many flaws when debugging, except those basic syntax errors that raised by
Quartus, something like forgetting to declare the new variable in scope, wrong assignment of FSM
states...... Those errors are fixed by compare my output with the correct output to see where is the
error, | also use the RTL viewer to see the port connection to debug.

In demo, we failed to show our ball in screen, that might because the collision condition is not
right, so that the ball just flashed at one second. We reviewed our code again and made some changes.
Also, since the key is interrupted, we cannot move two players at the same time, which might cause
the inequality. This problem can be solved but need a lot of modification.

In summary, we almost completed a game Stickman Badminton. Though it’s not as our
expected before, but the motion is really smooth. I learned a lot from this project, especially how to
use FSM to give control signals that make every part work properly as a whole entity, also how to
give correct inputs and outputs between different modules. Also, beside consolidating the

knowledge I learned in the course, I learned how to use sprite and compress the picture.

